Level raising for p-adic Hilbert modular forms
نویسندگان
چکیده
منابع مشابه
Geometric level raising for p-adic automorphic forms
We present a level raising result for families of p-adic automorphic forms for a definite quaternion algebra D over Q. The main theorem is an analogue of a theorem for classical automorphic forms due to Diamond and Taylor. One of the ingredients in the proof of Diamond and Taylor’s theorem (which also played a role in earlier work of Taylor) is the definition of a suitable pairing on the space ...
متن کاملHILBERT MODULAR FORMS AND p-ADIC HODGE THEORY
We consider the p-adic Galois representation associated to a Hilbert modular form. Carayol has shown that, under a certain assumption, its restriction to the local Galois group at a place not dividing p is compatible with the local Langlands correspondence [C2]. In this paper, we show that the same is true for the places dividing p, in the sense of p-adic Hodge theory [Fo], as is shown for an e...
متن کاملMOCK MODULAR FORMS AS p-ADIC MODULAR FORMS
In this paper, we consider the question of correcting mock modular forms in order to obtain p-adic modular forms. In certain cases we show that a mock modular form M is a p-adic modular form. Furthermore, we prove that otherwise the unique correction of M is intimately related to the shadow of M.
متن کاملBounding slopes of p-adic modular forms
Let p be prime, N be a positive integer prime to p, and k be an integer. Let Pk(t) be the characteristic series for Atkin’s U operator as an endomorphism of p-adic overconvergent modular forms of tame level N and weight k. Motivated by conjectures of Gouvêa and Mazur, we strengthen a congruence in [W] between coefficients of Pk and Pk′ for k ′ p-adically close to k. For p − 1 | 12, N = 1, k = 0...
متن کاملp-adic Modular Forms: An Introduction
Serre in the 1970s was the first to formalize such a question on the way to constructing p-adic L-functions, by way of developing the notion of a p-adic modular form to be the p-adic limit of some compatible family of q-expansions of classical modular forms. Katz came along fairly soon afterwards and generalized the theory to a much more geometric context, and showed that Serre’s p-adic forms e...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal de Théorie des Nombres de Bordeaux
سال: 2016
ISSN: 1246-7405,2118-8572
DOI: 10.5802/jtnb.956